Roll No: \square

BTECH

(SEM I) THEORY EXAMINATION 2021-22
ENGG MECHANICS
Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Q no.	Question
a.	State and explain parallelogram law of forces.
b.	What is equilibrium? State the necessary and sufficient conditions for a system of coplanar forces to be in equilibrium.
c.	What is truss? Explain its types and assumptions taken in analysis.
d.	Explain the types of beams with neat figures.
e.	State and explain theorem of parallel axis.
f.	Differentiate between centroid and center of gravity.
g.	Write D'Alembert's principle for linear and angular motion.
h.	What is relative velocity? How relative velocity is determined?
i.	Define neutral layer and neutral axis.
j.	Define torsional rigidity and section modulus.

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

Q no.	Question
a.	Three cylinders A, B and te each weighting 100 N and diameters 80 mm are placed in a channel of 180 mm wid as shown in figure. Determine the pressure exerted by the cylinder A and B at the point ${ }^{(t)}$ contact. $1,2,3 \& 4$.
b.	Determine magnitude and nature of forces in all members of following truss figure.
c.	A solid cone of base 100 mm and height 200 mm joins to base with cylinder of base 100 mm and height 200 mm . compute the centre of gravity of this composite body.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

Roll No: \square

BTECH

(SEM I) THEORY EXAMINATION 2021-22
ENGG MECHANICS

SECTION C

3. Attempt any one part of the following:

$$
10 \times 1=10
$$

4. Attempt any one part of the following:
$10 \times 1=10$

Q no.	\bigcirc Question
a.	What do you mean by perfect \& imperfect truss? Compare method of joints with method of section.
b.	Draw shear force and bending moment diagram for the beam shown in figure.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

\square

BTECH

(SEM I) THEORY EXAMINATION 2021-22
ENGG MECHANICS
5. Attempt any one part of the following:

Q no.	Qalculate centroid of given shaded area as shown in figure.
a.	Cals
b.	Derive an expression for mass moment of inertia of rectangular plate. Also find out centre of gravity for a hemisphere.

6. Attempt any one part of the following:
$10 \times 1=10$

Q no.	Question
a.	Two cars are travelling toward each other on a single lane road at the velocities $12 \mathrm{~m} / \mathrm{s}$ and 9 m / s respectively. When 100 m ppart, both drivers realize the situation and apply their brakes. They succeed in stopping ghultaneously and just short of colliding. Assume constant deceleration for each case tha determine (a) time required for car to stop (b) deceleration of each car (c) the distanct (avelled by each car.
b.	A wheel rotating abside a fixed axis at 20 revolutions per minute is uniformly accelerated for 70 sec during whim it makes 50 revolutions. Find the (i) angular velocity at the end of this interval and (ii) me required to reach 100 revolutions per minute.

7. Attempt any one part of the following:
$10 \times 1=10$

| Q no. | Question |
| :--- | :--- | :--- |
| a. | A member ABCD is subjected to point load $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} as shown in figure.
 Calculate the force P_{3} necessary for equilibrium if $\mathrm{P}_{1}=120 \mathrm{kN}, \mathrm{P}_{2}=220 \mathrm{kN}$ and $\mathrm{P}_{4}=$
 160 kN . Determine also the net change in the length of the member. Take $\mathrm{E}=2 \times 10^{5}$
 $\mathrm{~N} / \mathrm{mm}^{2}$. |
| b. | Determine the diameter of solid shaft which will transmit 450 kW at 300 rpm. The
 angle of twist must not exceed 1° per meter length and maximum torsional stress is
 to be limited to $40 \mathrm{~N} / \mathrm{mm}^{2}$. Assume, $\mathrm{G}=80 \mathrm{kN} / \mathrm{mm}^{2}$. |

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

